
      Journal of Management & Entrepreneurship         UGC Care Group I Journal  

       ISSN 2229-5348                                                                                      Vol-09 Issue-02 Aug 2020 

 

 

A Highly Efficient EEG Motor Based Brain-Computer Interface 

              Anshuman Nayak 

College of Engineering Bhubaneswar, Odisha, India 

 

 
Abstract—Brain-Computer Interfaces (BCIs) based on motor 

imagery (MI) provide a promising means of restoring freedom 

and communication to individuals suffering from locked-in 

syndrome. For take-home usage, BCIs using pricey medical-

grade EEG devices assessed in tightly controlled, artificial 

settings are unrealistic. Low-cost systems were assessed in 

earlier research, however the results were ambiguous or 

performance was below expectations. In this instance, we 

assessed OpenBCI, a low-cost EEG device, in a natural setting 

and used deep learning, neurofeedback, and broader temporal 

windows to enhance performance. utilizing deep learning, a 

multi-layer perceptron binary classifier was trained utilizing μ-

rhythm data recorded across the sensorimotor cortex of healthy 

individuals completing relaxation and right-handed MI tasks. 

We demonstrated that our approach outperforms earlier 

OpenBCI MI-based BCIs, expanding this low-cost device's BCI 

capabilities. 
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I. INTRODUCTION 

Locked-in syndrome (LIS) patients can consciously 
perceive the world around them despite their inability to move 
or communicate due to a near-complete paralysis of muscles 
[1]. Brain-Computer Interfaces (BCIs) have been proposed as 
a method to facilitate interaction with the world, using brain 
activity alone to control external devices [2]–[5]. Due to its 
non-invasiveness, scalp electroencephalography (EEG) is a 
commonly used method to measure neural activity [6]. EEG- 
based BCIs comprise three primary modalities: steady-state 
visually evoked potentials, the P300 waveform, and motor 
imagery (MI). MI is most suitable and practical for LIS 
patients since the other modalities require functional muscular 
activity [7]. 

Despite previous efforts, high-performing BCIs are 
confined to carefully-controlled, noise-free, artificial 
environments, and are heavily dependent on expensive 
medical-grade systems [8]. These conditions are impractical 
for typical BCI target users, who spend most of their time in 
noisy, interference-prone natural environments. Consequently, 
studies evaluated MI using the OpenBCI system: a low-cost 
portable BCI. However, reported accuracies were close to 
chance (Agarwal et al. [9] reported 53.4% mean accuracy), 
environmental conditions were unclear (Agarwal et al. [9], 
Belwafi et al. [10], and Suryotrisongko et al. [11] did not 
describe their experimental environment), or sample sizes 
were small or biased (Belfawi et al. (80% mean accuracy) used 
a sample size of four participants, including two with prior MI 
training). 

 
Neurofeedback training, absent from these studies, has 

been proposed to improve BCI performance by providing 
users with real-time self-regulated neural activity feedback [7]. 
Therefore, neurofeedback has the potential to improve the 
quality of MI data. Furthermore, deep learning, a machine 
learning technique using multi-layered artificial neural 
networks to learn rules from structured data, has had notable 
success in MI classification [12]–[15]. Finally, temporal 
window size, defined as the duration a user is required to 
imagine movement, has been shown to correlate positively 
with accuracy and thus further improve performance [16], 
[17]. 

To that end, this study evaluated MI classification using 
OpenBCI and employed neurofeedback, deep learning, and 
long imagery duration to improve performance over similar 
studies. The remainder of this paper is structured as follows: 
Section II describes our methods, covering the experimental 
data collection (II A), neurofeedback (II B), pre-processing 
strategies (II C), and description of a deep learning classifier 
(II D). Section III presents the results that are subsequently 
discussed in Section IV, and Section V concludes the study. 

II. METHODS 

A. Data Acquisition 

Seven human volunteers participated in the experiment and 
gave their informed consent. Experimental procedures were 
designed and carried out in accordance with the Declaration of 
Helsinki and approved by the Institutional Review Board. 

 

 

Figure 1: International 10/10 electrode configuration used to maximize μ- 
rhythm detection. Red represents 8 EEG voltage recording electrodes and 
yellow represents reference (A1) and common-mode noise rejection 
bias/ground (A2) electrodes. 
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Eight passive gold cup electrodes (OpenBCI) coated with 
conductive paste (Weaver Ten20) were secured to the scalp 
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using a neoprene cap as per the international 10/10 EEG 
configuration shown in Fig. 1. This configuration covers the 
sensorimotor region, which is recommended for high-quality 

𝑖=1 
7 Hz 

μ-rhythm detection [7]. Raw EEG data from 8 channels were 
wirelessly (low-energy Bluetooth) acquired by a laptop PC at 
250 Hz using the OpenBCI Cyton Biosensing 32-bit board and 
custom-built software written in Python. 

The visual cue-based experimental paradigm consisted of 
two MI tasks: baseline mental relaxation and imagined right- 
handed movement. Tasks lasted 10 seconds and were 
interleaved in an alternating manner over a single 10-minute 
session, guided by the software interface (Fig. 2). 
Consequently, EEG data labelling was synchronized with 
visual cues from the software. To balance the dataset, an equal 
number of relaxation and right-handed imagery movements 
was considered. The experiment was conducted in a standard 
office meeting room to mimic a natural indoor environment 
and participants were seated comfortably on a chair facing a 
laptop screen. 

 
 

Figure 2: Custom-built data acquisition and neurofeedback training software 
interface (written in Python). A visual cue to relax (gray open-hand) or 
imagine right-handed movement (black closed-hand) is toggled in region A. A 
rising (mental relaxation) or falling (right-handed imagery) horizontal bar (B) 
provided real-time MI feedback. A 10-second countdown timer is displayed in 
region C. 

B. Neurofeedback 

The change in amplitude of μ-rhythms during self- 
regulated voluntary movements has gained considerable 
interest as a potential electrophysiological signal for EEG- 
based BCIs [18]. These variations of synchronization of 
cortical rhythms are referred to as event-related 
desynchronization (ERDs) and synchronization (ERSs) [19]. 
When imagining hand movement, the μ-band exhibits a 
decrease in amplitude, or ERD. Conversely, when the 
imagined movement ceases, the brain exhibits an increase in 
μ-band amplitude [20], [21], or ERS. Leveraging this 
phenomenon, we developed software capable of displaying 
ERDs and ERSs back to the user in real-time. 

Visual feedback of self-regulated MI neural activity was 
provided to participants by way of a floating horizontal bar 
(Fig. 2B) updated every second. Bar height was computed by 
calculating the μ-rhythm frequency band (7–13 Hz) spectral 
power averaged across all 8 electrode channels (Equation 1). 

Where 𝑖 is the electrode channel, 𝑋𝑖(𝑓) = 𝓕{(𝑥𝑖)}, and 𝓕 is 
the discrete Fourier transform of the raw channel time-series 
signal 𝑥𝑖. 

Participants were instructed to move the bar downwards 
(Fig. 2B black bar) by imagining a prolonged right-handed 
movement, or upwards (Fig. 2B gray bar) by relaxing during 
the 10-second task duration. Previous studies instructed 
participants to imagine a fixed routine (e.g., hand-squeeze 
action), which has proven to be unreliable [9]–[11]. Here, we 
leveraged neurofeedback training to allow users to experiment 
with different imagery strategies (e.g. hand movement) to 
identify the most successful one in real-time. 

C. Data Pre-Processing 

A third-order zero-phase Butterworth bandpass filter was 
applied between 0.1–100 Hz and notch-filtered at 50 Hz to 
suppress line noise across all 8 electrode channels. Sample 
values exceeding ±6𝜎, where 𝜎 is the standard deviation of any 
given voltage trace, were set to ±6𝜎 to rectify outliers in 
voltage. This pre-processing method has previously been 
described in detail by Kiral-Kornek et al. [2]. The labelled 10- 
minute time-series voltage data from all 8 electrode channels 
from each participant were split into chronological 10-second 
blocks. These blocks were further split into W-subsets 
comprising samples of equal window size (in seconds), W, 
where W ϵ {1,2,3,4,5,6,7,8,9}. 

To maximize dataset size for training a deep learning 
classifier, a sliding window of size W and a stride of 4 ms (one 
sample) was used to generate more samples within each 10- 
second block. Time-series data were then transformed into the 
frequency domain by performing an FFT on each W-length 
sample to compute μ-rhythm band-limited spectral power, 
resulting in 15,060–135,060 8-dimensional vector training 
samples within each W-subset. 

D. Deep Learning Classification 

A multi-layer fully-connected perceptron network scoring 
high (98.2% accuracy) on the MNIST hand-written digit 
classification task was implemented on CPU/GPU platforms 
using the deep learning framework TensorFlow [22] to classify 
relaxation and right-handed imagery. This classifier was 
chosen because the 8-dimensional training samples resembled 
low-level hand-written digit features. Data epochs from each 
W-subset were randomly shuffled and split into training (75% 
of samples) and test (25% of samples) sets, and fed into the 
network (one for each participant) in batches of 100. Weights 
were learned using slow gradient decent over 100 epochs. The 
base learning rate was set to 0.05, and decreased by a factor of 
10 after 2000 iterations, with the final layer trained with 25% 
dropout. Network performance was evaluated by computing 
the classification accuracy (correct classifications / total 
classifications) of the trained model on the held-out test set for 
each W-length subset. Network topology and hyperparameters 
are summarized in Table 1. 
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Classification accuracies as a function of temporal window 
size, W, are tabulated in Table 2 for each participant, and 
represented more concisely in Fig. 4. At the group level, 
median accuracy increased with imagery duration up to 7 
seconds, before decreasing approaching 9 seconds. The 
minimum and maximum accuracy across the 7 participants 
was 55.46% (1 second temporal window) and 98.96% (9 
seconds temporal window), respectively. A two-tailed paired 
Student’s t-test revealed no statistically significant 
improvement beyond 5 seconds duration. Hence, this point 
appears to mark the optimal tradeoff between imagery duration 
and accuracy (~83%). 

 

 

 

 
Table 1: Multi-layer perceptron network topology and hyperparameters. 

III. RESULTS 

Fig. 3 shows the temporal evolution of μ-rhythm power 
computed from a single electrode channel (CP3) from a single 
participant (P006) over 30 seconds. Event-related 
synchronizations during mental relaxation increased μ-band 
amplitude, resulting in increased μ-power (first and last 10 
seconds). Conversely, imagined motor activity decreased μ- 
band power (middle 10 seconds) resulting from event-related 
desynchronization. 

 

 

Figure 3: μ-rhythm spectral power temporal evolution computed for a single 
electrode channel (CP3) from a single participant (P006) over 30 seconds of 
alternating relax-imagine-relax time-series data. 

 

Figure 4: Boxplot showing classification accuracies across 7 participants as 
a function of temporal window size. Horizontal lines represent medians, top 
and bottom whiskers represent maximum and minimum, respectively, and 

boxed regions represent 25th to 75th percentile data. 

IV. DISCUSSION 

In this work, we evaluated methods for neurofeedback 
training, varying imagery duration, and deep learning for 
classifying relaxation vs. imagined motor-related EEG data 
using the OpenBCI system. We found that neurofeedback 
training seemed to improved classification accuracy. This was 
expected since participants could identify successful motor- 
imagery strategies during data collection and labelling, 
consequently generating high-quality training samples for 
classification. 

We also found that classification accuracy increased with 
temporal window size up to 7 seconds. Fig. 3 affords us a 
possible explanation for this behavior. When users begun the 
imagination task by self-regulating neural activity, their 
corresponding μ-rhythm response was gradual and had a 
cumulative effect over the duration of the task. When the task 
was switched, the same effect was observed, albeit in the 
opposite direction. Therefore, longer imagery durations 
captured prolonged μ-rhythm activity, yielding higher 
classification accuracies. This was expected since imagery 
duration may increase classification confidence and thus 
accuracy. Accuracy was found to decrease beyond 7 seconds, 
possibly due to a decrease in the number of training examples. 
The possibility to vary the window duration provides users 
with a mechanism to prioritize either speed or accuracy. 

Compared to previous studies that investigated MI 
classification using the OpenBCI system [9]–[11], we 
emphasized the experimental environment by taking into 
account the impact of environmental parameters (e.g. audible 
noise, distractions, and electromagnetic interference) and 
therefore demonstrated the robustness of our system in 
interference-prone environments. We also demonstrated that 
our system achieved higher classification accuracy than 
Agarwal et al. [9] and Suryotrisongko et al. [11] by increasing 
temporal window size. Belfawi et al. [10] reported a group 
mean accuracy of 80%; nevertheless, their relatively small 
sample size (n = 4) does not allow direct comparison. It is 
important to note that although we achieved superior 
classification accuracy, this came at a latency cost. However, 
we believe this further improves the robustness of BCIs, which 
is essential for practical use in real-life situations. 

Hyperparameter Value 

Hidden units in first layer 200 

Hidden units in second layer 100 

Hidden units in third layer 60 

Hidden units in fourth layer 30 

Units in fifth (output) layer 2 

Batch size 100 

Training epochs 100 

Base learning rate 0.05 

Max learning rate 0.5 

Dropout 25% 
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 Temporal Window (seconds) 

1 2 3 4 5 6 7 8 9 

P
a

rt
ic

ip
a
n

t 

001 55.46 55.96 59.72 59.17 64.27 59.37 63.37 62.82 63.58 

002 63.02 64.56 72.91 71.52 70.70 85.32 91.29 55.85 97.21 

003 65.24 68.26 74.31 71.30 82.28 70.33 66.79 62.83 66.95 

004 64.25 73.10 79.28 84.87 89.13 90.74 91.51 84.01 58.48 

006 71.08 85.20 93.03 91.64 90.62 93.36 98.49 97.48 98.96 

007 68.71 74.35 79.80 84.47 86.11 83.94 80.58 78.42 71.71 

008 62.01 70.99 76.74 79.29 83.52 82.37 85.24 81.27 74.05 
 64.25 71.09 76.74 79.30 83.53 83.94 85.25 78.43 71.71 

 

Table 2: Classification accuracies (%) across all 7 participants as a function of temporal window size (imagery duration). Medians shown in boldface (bottom 
row) and minimum and maximum shown in italicized boldface. 

 

V. CONCLUSION 

In this paper, we demonstrated the successful 

implementation of a covert binary movement classifier for 

classifying EEG using the OpenBCI system. We found 

classification accuracy increases with imagery duration, and 

leveraged deep learning and neuro feedback to outperform 

previous similar studies. This system constitutes a low-cost 

and robust motor imagery-based classification system for 

EEG signals, enabling accessible brain-computer interfacing 

for individuals with locked-in syndrome in their natural 

environment. Future work involves validating this system in 

a low-power processing environment as could be provided by 

IBM’s True North neurosynaptic chip system [23]. 
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